PHYSICAL REVIEW E

VOLUME 52, NUMBER 2

RAPID COMMUNICATIONS

AUGUST 1995

Growth equation with a conservation law

Kent Bxkgaard Lauritsen .
Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215
(Received 23 May 1995)

A growth equation with a generalized conservation law characterized by an integral kernel is introduced. The
equation contains the Kardar-Parisi-Zhang, Sun-Guo-Grant, and molecular-beam epitaxy growth equations as
special cases and allows for a unified investigation of growth equations. From a dynamic renormalization-
group analysis critical exponents and universality classes are determined for growth models with a conserva-

tion law.
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I. INTRODUCTION

In order to describe the dynamics and scaling of interface
growth, Kardar, Parisi, and Zhang proposed a Langevin
equation now known as the KPZ equation [1]. This equation
is constructed to describe the long-time long-wavelength
(hydrodynamic) limit of the dynamics of nonequilibrium in-
terface growth processes. The KPZ equation has been stud-
ied intensively by analytical and numerical methods and a
number of theoretical results have been obtained [2-5].
Specifically, the scaling of the correlation function
C(x,t)=x%%g(t/x*) characterized by the roughness expo-
nent « and the dynamic exponent z has been established.
However, only poor agreement is obtained between the theo-
retical results and experiments [4,5]. As a result, various
modifications of the KPZ equation have been analyzed.

In the present paper we introduce a growth equation with
a generalized conservation law described by an integral ker-
nel. We will refer to the equation as the growth kernel equa-
tion (GKE). It contains the KPZ equation as a special case.
In addition, the previously studied Sun-Guo-Grant (SGG) [6]
and molecular-beam-epitaxy (MBE) [7] equations are also
contained in our general equation.

The motivation for introducing the GKE equation is to
gain information on how conservation laws change the uni-
versality classes for nonequilibrium growth models, and to
allow for a unified description of growth models studied so
far. Furthermore, one can speculate whether some growth
experiments, which yield exponents that do not agree with
the KPZ exponents, may contain nonlocal growth effects
such as, e.g., the experiments on electrochemical deposition
reported in Refs. [8,9].

Previous studies of nonlocal terms in interface related top-
ics include fluctuating lines in quenched random environ-
ments. Domain walls subject to quenched long-range corre-
lated impurities were studied in [10]. More recently, the
dynamic relaxation of drifting polymers [11] and the critical
dynamics of contact line depinning [12] were studied, where
in both cases the equation of motion includes nonlocal inter-
action terms.
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II. GROWTH KERNEL EQUATION

The GKE equation for a d dimensional interface A(x,?)
reads

oh d..r ’ 12 A AV

E:jd x'K(x—x )(vV h+§(V ) l+n, Q)
with an additive noise 7(x,f) whose correlations will be
specified below. The kernel K(r) describes nonlocal interac-
tions in the system [13]. We want the total height
H(t)=[d%h(x,t) to be conserved and impose the con-
straint [d%'K(x—x')=0, which leads to dH/dt=0, pro-
vided the noise is chosen to satisfy 7(k=0,)=0 [see Eq. (3)
below]. Consequently, the GKE equation conserves the
quantity H(t).

The kernel has the behavior

1
K(r)~ ’7+—U for r— 0, (2)

where we have introduced an exponent o describing the
long-distance decay. By Fourier transforming, c=0 corre-
sponds to the kernel being a Dirac 6 function, and therefore
the usual KPZ equation [1].

The case K(x—x')=—V28%x—x") yields the dynamics
of the SGG and MBE equations [6,7], and corresponds to
o=2. In order to incorporate these equations, we introduce a
kernel N(r) in the noise correlator

(n(x,0)p(x",t"))=2DN(x~x")8(t—1t") 3)

with the form
1
N(r)~ W for r—oo, (4)

Here, 7 is an exponent independent of o. The case 7=0
means no correlations in the noise (KPZ, MBE) whereas
7=2 corresponds to conserved noise as it appears in, e.g.,
the SGG equation. The correlator (3) implies that
n(k=0,t)=0, as required above. We can imagine the noise
related to a white noise &(x,t) through n(x,?)
=[d%'R(x—x")&(x',t), where the kernel R(r) has the
large argument behavior R(r)~1/r¢* ™. This form leads to
the correlations in Egs. (3) and (4).
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Under the rescaling x—x’=x/b the parameters in the
GKE equation change as

vy =p?T27y, (5)
)\__,)\'=b2+a_2_0'}\, (6)
D__)DI:bz—Za—d“rD. (7)

For A =0, the equation is made scale invariant for

2+o0—d-—r
zo=2+o0, Q=——m—- (8)

If we use these values in the rescaling for A we obtain that
N =p(FTo=d=n2) "o naively we expect the critical dimen-
sion of the model to be given by d.=2+ o— 7. Therefore,
for d>d_ the N term will scale to zero, whereas for d<<d,
the A term will be relevant and the scaling behavior of the
GKE equation will no longer be described by the naive ex-
ponents. Now we will carry out a dynamic renormalization-
group (RG) analysis in order to determine the scaling behav-
ior of the GKE equation.

III. RENORMALIZATION-GROUP ANALYSIS

We Fourier transform the GKE equation using the rules
for Fourier transformation of convolutions and products and
obtain in the hydrodynamic limit k—0

A A diq
(k) =Gtk ) n(k,0)— > Golko) &7 [ "2

© dQ)
Xf pp. q-(k—q) h(q,Q) h(k—q,0— ),

©)

where Gy(k,w) is the (bare) propagator defined by the ex-
pression Gy(k,w)=1/(vk**“—iw). A is the momentum
cutoff. The noise in Fourier space takes the form

(9(k,w)p(k',0")y=2Dk™ (27)4 "1 84 k+k')(w+ w').
(10)

The renormalization group consists of coarse-graining fol-
lowed by rescaling [14]. In coarse-graining, modes with mo-
menta e '<k<<1 (A=1) are eliminated from the equation of
motion. In rescaling, wave vectors are rescaled according to
k—k'=bk, with b=e'. The RG procedure is most effi-
ciently carried out by the means of diagrams, i.e., we repre-
sent the GKE equation (9) as shown in Fig. 1, cf. Refs.
[1,15,16].

After a standard but lengthy calculation one obtains the
one-loop RG flow for the GKE equation [17]

dv S \’D 2+20—7—d "
ar~M\FTET TR 4d . )
D Na+z=2 12
g7~ Matz o), (12)
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(@)
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q0) G,(k, w) G,(k,
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n(k, o) - kg, 0-Q)
(b) h(k—q,0-Q
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k,w) (—k-w)

FIG. 1. (a) Diagrammatic representation of the GKE equation
(9). (b) The vertex A which includes integration over (gq,{).
The q-(k—q) is associated with the outgoing momenta;
[=J[d%/(2m)*1(dQ/27). (c) The contracted noise 2Dk", from
Eq. (10).

D(z—2a—d— 1), <20,

K, N?D 13
z—2a~d—7-+—4£T, =20, (13)

dD_
dl | D

where K;=S,/(27)¢, and S;=27%?/T'(d/2) is the surface
area of the d dimensional unit sphere. The nonrenormaliza-
tion of the noise for 7<2o (a result which will be valid to all
orders) leads to z=2a+d+ 7. Furthermore, the RG flow for
the case 7=20 reduces to the case 7=20 [17]. Due to the fact
that N\ does not renormalize to one-loop order, cf. Eq. (12),
one obtains the relation [18]

atz=2+o0. (14)

The critical exponents are determined from dv/dl/=0 and
dD/dl=0, i.e., by fixing v and D. It is convenient to intro-
duce the coupling constant

K, \°D
g=8()=z7 735 (15)

with the dimension [L]¢* " ?~2, The RG flow of g for fixed
v and D becomes

dg 1 d\ _, . 5
21 285 g1~ 28latz—o-2)
_[2+o-1-d)g—3(2+20—7—d)g?, <20,
“lQ+o—-7—d)g—[3(2+20—7)—4d]g?> r=20.
(16)
The fixed points (FP’s) for g are gy =0, and
2+o0—7—d <
32+20—7—ad)° %
& = 2+o0—7—d a7
7=20.

32+20-1—4d’

Physically, we have that v,D>0. As a result, FP’s where
g* <0 are unphysical since they would lead to an imaginary
value for \.
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FIG. 2. Coupling constant flow for 7<20.

IV. RESULTS

First, we discuss the case 7<<2o. The critical dimension
is d.=2+o0—7. In Fig. 2 we show the RG flow of the
coupling constant g, for various dimensions. For d<<d, the
trivial FP gy =0 is unstable, whereas g* is stable. For
d>d., g{ becomes stable. For d>d_ .+ o, g* is again posi-
tive but now an unstable FP. Probably this latter behavior is
an artifact due to the fact that the FP is only known from the
one-loop expansion [17].

The FP’s and exponents can be calculated in an
e€=d_—d expansion. For the trivial FP g =0 we recover the
exponents for the linear GKE equation, cf. Eq. (8). Conse-
quently, they will describe the GKE system for dimensions
d>d_, where the trivial FP is stable, cf. Fig. 2(b). The non-
trivial FP is to first order in € equal to g*= €/30, with the
exponents

e 2+o—7—d
a=z= 3 > (18)

€ d+t+20+4
z=2+a—§=f. (19)

These values are the exponents for the GKE equation in di-
mensions d<<d_., and are consistent with the nonrenormal-
ization of N\ and D in the case 7<20, cf. Egs. (12) and (13).

Next, we discuss the case 7=20. We again remark that
for any 7>20 we get the behavior for r=20, and therefore
we only have to discuss the latter case [17]. The critical
dimension is d.=2— 0. With e=d.—d, the nontrivial FP
becomes for o# 3

= < = _10(d). (0
& T2(2et20-1) 2(20-1) :

The case 0<o<}4 Here, g* is negative, and a FP expan-
sion in powers of € does not exist. The KPZ equation is a
well-known example of this failure of the € expansion. The
two-loop results for the KPZ equation also show the failure

() (b) ©

d<%<dc %<d<dc %<dc<d

& g*](
¥

& g* g

PO S

FIG. 3. Coupling constant flow for 7=20, and o< % For di-
mensions d>d_ (c) shows the possibility of a phase transition at
g* (see the text).
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(b) ©

FIG. 4. Coupling constant flow for 7=2¢, and o> 3.

of the € expansion around the critical dimension d.=2 [19].
In Fig. 3 we show the RG flow for g in the case where
o< %

In order to obtain the exponents we can use the one-loop
result (17) of the g* fixed point. For the KPZ equation this
gives the exact exponents in d=1 (cf. [1]), but despite this
“success” the method is uncontrolled due to the fact that
g%, or A*, is not small at the FP, which has been the under-
lying assumption under the whole RG calculation and series
expansion in N. The direct substitution of (17) into the ex-
pressions for the exponents results in the values (with
T=20)

_2-d(2-0-d)
T T23E=2d)

(21)

(2—-d)(2—o0—4d)

z=2+o0— 2(3-24) ,

(22)

which in d=1 yields a=(1—0)/2 and z=3(1+ 0)/2. For
o=0 this reduces to the KPZ exponents [1].

The case o> % In Fig. 4 we show the RG flow for g in
this case. For dimensions d>2>d, the g* fixed point is
positive; probably this is an artifact due to the one-loop re-
sult. Now the € expansion is possible. We can obtain the
exponents to first order in € at the O(€) fixed point (20) with
the result

d.=4
MBE

FIG. 5. Universality classes and critical dimensions for the GKE
equation. Below the line d.=2—o0, i.e., for 7<2o0, every point
represents a distinct universality class. Above the line d.=2—o,
i.e., for 7=20, every vertical line represents a different universality
class. The KPZ, SGG, and MBE models are shown with solid
circles. The circle at o=3,7=1 divides the 7=2¢ line into two
parts. The part with o< % where the € expansion does not exist, and
the part o> % where the € expansion does exist.
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a e+0(€), (23)

. o
T 2(0-1)

z=2+o0— e+0(€?). (24)

o
2(20—1)

For 7=20 (7=20) there is the possibility of carrying out
an expansion in the quantity €' =d—d.=d+o—2 for di-
mensions above d.. The FP is

* ’ 1 ’
g¥(e)=

— ' 12
32 +1-20) € ~2(1=20) € TO()

(25)

and it corresponds to a phase transition in the model, cf. Fig.
3(c). The phase transition is between the g; “smooth” phase
and the strong-coupling rough phase. When o >3 the g*
fixed point is negative, i.e., the €' expansion is only mean-
ingful for o<<1. The exponents associated with the roughen-

ing phase transition are to first order in €’

o

a= m‘a_—) €, z=2. (26)
For 0=0 the exponents reduce to the well-known results
a=0 and z=2 for the KPZ equation (see, e.g., [19]).

V. CONCLUSIONS

In this paper we have performed a renormalization-group
analysis of the GKE growth equation which is an equation
with a generalized conservation law described by an integral

KENT BAKGAARD LAURITSEN 52

kernel. The results for the FP’s and critical exponents have
shown that the GKE equation encompasses a range of differ-
ent universality classes; cf. Fig. 5.

For 7<20, every point represents a distinct universality
class, with the SGG and MBE models belonging to this case.
For all these universality classes we were able to obtain the
critical exponents, and the values are given in Egs. (18) and
(19). Furthermore, the exponents fulfill the relation (14).

For 7=20, every vertical line represents a different uni-
versality class. The KPZ equation belongs to this case. More-
over, we noted the breakdown of the e expansion for o< %
As a consequence, estimates for the critical exponents could
only be obtained by a direct substitution of the g* FP value
into the expressions for the exponents, resulting in the values
in Egs. (21) and (22). However, for o> 1 the € expansion
could be used to obtain the exponent values as given in Egs.
(23) and (24).

In the GKE equation we have the two free parameters 7
and o. As a result, we can always choose these values in
order to obtain agreement with values for @ and z deter-
mined in an experiment. However, unless one can argue that
the experiment contains nonlocal growth effects described by
a kernel this does not give the true explanation of the experi-
ment.
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